大家好,区块链爱好者!如果你关注以太坊演进的细节,你肯定想要
- 也许说明这些更新如何影响 meme 代币生态系统,比如扩容如何帮助 meme 代币。
看看 Ladislaus.eth 在 X 上的这条最新线程。这是对以太坊基金会(EF)在 2025 年 9 月 5 日至 19 日那几周的协议研究更新的汇总。这些见解对于理解以太坊如何应对扩容和安全等重大挑战非常关键,而这些改进可能通过让网络更快、更便宜,间接推动 meme 代币生态的发展。
Ladislaus 以一系列推文开始,列出了新的文章和论文。我们逐条拆解,尽量直白——不需要博士学位也能看懂。
Ethereum 状态分析:应对膨胀和陈旧数据
一篇值得关注的文章深入分析了以太坊的 state(链上存储的所有数据,包括智能合约信息和账户余额等)。分析揭示了一些触目惊心的数据:55% 的合约只被使用过一次,97% 有重复代码,超过一半没有存储,63% 的存储槽只被访问过一次。
这为什么重要?随着以太坊增长,这种“状态膨胀”(多余的垃圾数据)和“陈旧状态”(旧的、未被使用的数据)会拖慢网络。要扩展 layer-1 网络,社区必须在这里想出聪明的解决方案。对于 meme 代币的创建者和交易者来说,更精简的以太坊可能意味着更低的手续费和更快的交易,使那些病毒式的拉盘更易实现。
阅读全文见 here。
PeerDAS 密码学:增强安全信心
接着是一篇新论文,探讨了 PeerDAS 的安全性——这是一种数据可用性采样(data availability sampling)方法,在以太坊的扩容路线图中非常关键。论文在标准模型下、基于稳健假设,给出了新的证明,提升了对此密码学基础的信任度。
简单来说,PeerDAS 帮助确保数据可用性,而无需每个人都下载所有数据,这对处理更多交易至关重要。更强的安全性意味着网络风险更低,间接惠及基于以太坊的 meme 代币,因为生态更稳健。
查看论文(在 ePrint)here。
增量可验证计算(IVC):为 ZK 技术建立新模型
这是一篇合作论文,提出了用于增量可验证计算(Incrementally Verifiable Computation, IVC)的 Open-and-Sign Random Oracle Model(osROM)。IVC 在零知识(zero-knowledge, ZK)证明系统中很关键,能让你在不泄露细节的情况下验证计算——对隐私和扩容都非常有用。
该论文巩固了 IVC 的理论基础,整合了文献中分散的见解。对 meme 世界而言,更好的 ZK 技术可能支持更复杂、隐私性更强的 meme 代币功能,比如 DAO 中的匿名投票或隐藏交易。
深入阅读 here。
Fusaka-Devnet-5:为未来 Fork 设定 Blob 参数
ethPandaOps 团队分析了 Fusaka-Devnet-5 测试网的数据,建议为即将到来的 Blob Parameter Only(BPO)硬分叉设置初始参数。他们建议每个区块最多从 15 个 blobs 开始,未来可能升级到 21 个。
blobs 是以太坊数据可用性层使用的数据块,帮助 rollups(layer-2 解决方案)以更低成本存储数据。更多的 blob 数量意味着更高的容量,这可以大幅降低 layer-2 上发布和交易 meme 代币的成本。
完整分析见 here。
Lean Consensus Call #7:简化多重签名与更多讨论
Ladislaus 总结了第七次 lean consensus call(以前叫 beam call),讨论重点包括 leanMultisig 规范、leanVM 设计、leanSpecs,以及后量子互操作性——所有讨论都以简洁为导向。
这些讨论旨在优化以太坊的共识层。对于 meme 爱好者来说,精简的共识机制可能带来更高效的网络,支持更高的吞吐量,从而更好地承载那些节奏极快的代币动态。
查看线程摘要 here。
ZK Attester 客户端:对 staking 和节点的影响
还有一篇文章讨论了 layer-1 zkEVM 努力可能如何改变 staking 和节点运行,重点通过一个 ZK attester 客户端来剖析。
zkEVM 把 ZK 证明引入以太坊虚拟机执行,可能使验证更快、更便宜。这或许能使 staking 更加民主化,让更多人参与并保护运行 meme 代币的网络。
在 Paragraph 上查看。
以往更新小结
线程还提到了上周的版本以保持延续性,并提到了此前的 Proximity Prize 公告。如果你感兴趣,关注 Ladislaus 可以每周获取更新。
这些更新显示,以太坊的研究社区正在辛勤工作,为更可扩展、更安全的区块链铺路。对于 meme 代币内部人士来说,关注这些进展可能让你更快判断网络改进如何催生下一个潮流。
想看完整的线程?前往